[ZJOI 2013] bzoj3110 K大数查询 【树套树】
发布时间:2021-01-17 09:46:19 所属栏目:大数据 来源:网络整理
导读:Description 有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。 Input 第一行N,M 接下来M行,每行形如1 a b c或2 a b
#include <cstdio> const int Maxn = 50000 + 10,MS = Maxn << 8; int root[Maxn << 2],ls[MS],rs[MS],tot,M; long long Cnt[MS],ly[MS]; //线段树的外层为权值,内层为区间 int Ina; char Inc; bool InSign; inline int geti() { InSign = 0; while (Inc = getchar(),Inc < '0' || Inc > '9') InSign |= Inc == '-'; Ina = Inc - '0'; while (Inc = getchar(),Inc >= '0' && Inc <= '9') Ina = (Ina << 3) + (Ina << 1) + Inc - '0'; if (InSign) Ina = -Ina; return Ina; } void Insert(int &u,int x,int y) { //内层线段树 if (!u) u = ++tot; if (l >= x && r <= y) { Cnt[u] += r - l + 1; ++ly[u];//永久化懒惰标记 return; } int mid = (l + r) >> 1; if (y <= mid) Insert(ls[u],x,y); else if (x > mid) Insert(rs[u],mid + 1,y); else { Insert(ls[u],mid); Insert(rs[u],y); } Cnt[u] += y - x + 1; } void add(int x,int y,int val) { //外层线段树 权值线段树 int l = 1,r = N,u = 1,mid; while (true) { Insert(root[u],y);// if (l == r) break; //边界 mid = (l + r) >> 1; u <<= 1; if (val <= mid) r = mid; else l = mid + 1,u |= 1; } } long long Count(int u,int y) { if (l >= x && r <= y) return Cnt[u]; int mid = (l + r) >> 1; long long ans = 0; if (y <= mid) ans = Count(ls[u],y); else if (x > mid) ans = Count(rs[u],y); else ans = Count(ls[u],mid) + Count(rs[u],y); ans += (y - x + 1) * ly[u]; return ans; } int query(int x,long long val) { int l = 1,u = 1; long long tmp; while (true) { if (l == r) return l; mid = (l + r) >> 1; tmp = Count(root[u << 1 | 1],y); if (tmp >= val) l = mid + 1,u = u << 1 | 1; else r = mid,u = u << 1,val -= tmp; } } int main() { N = geti(),M = geti(); int type,b; long long c; while (M--) { type = geti(),a = geti(),b = geti(),c = geti(); if (type < 2) add(a,c); else printf("%dn",query(a,c)); } return 0; } 好像还有其他做法。。暂时先贴这个。。什么CDQ分治整体二分我有空再去看qwq 我的代码比较丑=。= #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> using namespace std; typedef long long LL; int Ina; char Inc; bool InSign; inline int read() { InSign = 0; while (Inc = getchar(),Inc >= '0' && Inc <= '9') Ina = (Ina << 3) + (Ina << 1) + Inc - '0'; if (InSign) Ina = -Ina; return Ina; } int n,m; const int Maxn = 50000 + 10,tot; long long cnt[MS],ly[MS]; //线段树的外层为权值,内层为区间 void insert(int& u,int y) { if(!u)u = ++tot; if(l>=x&&r<=y){ cnt[u] += r-l+1;++ly[u];return;} int mid = (l+r)>>1; if(y<=mid)insert(ls[u],y); else if(x>mid)insert(rs[u],y); else { insert(ls[u],mid); insert(rs[u],y); } cnt[u] += y - x + 1; } /* void add(int x,LL v) { insert(root[u] ? root[u] : root[u] = ++size,n,R); if(l==r) return; int mid = (l+r)>>1; if(x<=mid)add(u<<1,x); else add(u<<1|1,x); } */ void add(int x,int v) { int l=1,r=n,u=1,mid; while(true) { insert(root[u],y); if(l==r)break; mid = (l+r)>>1;u<<=1; if(v<=mid)r = mid; else l = mid+1,u|=1; } } LL Count(int u,int y) { if(l>=x&&r<=y)return cnt[u]; int mid = (l+r)>>1;LL ans = 0; if(y<=mid)ans = Count(ls[u],y); else if(x>mid)ans = Count(rs[u],y); else ans = Count(ls[u],y); ans += (y-x+1)*ly[u];//懒惰标记永久化了 return ans; } /* 递归版: int query(int u,int x) { // 外层线段树 if(l == r) return l; int mid = (l + r) >> 1; int cnt = count(root[rch],R); if(cnt >= x) return query(rch,x); else return query(lch,x - cnt); } */ int query(int x,LL v) { int l = 1,r = n,u = 1;LL tmp; while(true) { if(l==r)return l; mid = (l+r)>>1; tmp = Count(root[u<<1|1],y); if(tmp>=v)l=mid+1,u=u<<1|1; else r=mid,u=u<<1,v-=tmp; } } int main(void) { n = read(),m = read(); int type,b;LL c; for(int i=1;i<=m;i++) { type = read(),a = read(),b = read(),c = read(); if(type == 1)add(a,c); else printf("%dn",c)); } return 0; } 下面是其他解法。。 STL暴力大法 http://blog.csdn.net/qq_21110267/article/details/44514709 (编辑:青岛站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐