Python数据可视化:箱线图多种库画法
发布时间:2019-11-06 15:37:11 所属栏目:优化 来源:菜鸟学习社
导读:概念 箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字。 四分位间距(
【代码第一部分】数据生成
数据长啥样?下面是给出的数据框前面的部分,一共400个样本,分性别和年龄。 ![]() 【代码第二部分】使用seaborn库画图 简单看看所有数据的分布情况:
![]() 根据性别分组:
![]() 根据年龄分组:
![]() 上面这些是seaborn库的简单使用,可以通过年龄看男女花费比较,也可以根据性别看不同年龄段的花费比较,还是比较直观的。当然除此之外还有很多其他的炫技,大家可以自己尝试。 总结 从上面来看,虽然我们是采用不同方法来画箱线图,但是最基本的都是调用matplotlib库,这里面pandas是最简单的箱线图可视化,但是不灵活。而matplotlib虽然灵活,但是需要慢慢调,而且复杂。相比之下seaborn更加酷炫,而且图还更好看。上面例子都是本人亲测,一个个对比,原创文章,大家如果有其他问题可以留言讨论。
(编辑:青岛站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐